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 Search Strategy and Selection Criteria 

 A literature review was conducted in January 2016 us-
ing PubMed, Ovid, and Science Direct with the following 
descriptors: Alzheimer’s disease (AD), neurobiology, pa-
thology, review. Results obtained ranged between 150 
and 2,200 records after the combination of different key-
words. Scientific publications between 1996 and 2015 
 either in English or Spanish, discussing the neuromolecu-
lar hypotheses of AD were selected. Papers concerning 
clinical presentation, diagnostic methods, and treatment 
were excluded.

  Alzheimer’s disease (AD) was first described in 1906 
at a conference in Tubingen, Germany by Alois  Alzheimer 
 [1] , as a “peculiar severe disease process of the cerebral 
cortex.” In recent times, AD is considered a chronic or 
progressive syndrome, characterized by impaired cogni-
tive capacity beyond what could be considered a conse-
quence of normal aging; that affects the memory, think-
ing, orientation, comprehension, learning, language, and 
judgment. More than one hundred years have passed 
since the first pathophysiological aspects of AD were de-
scribed. Neurobiological mechanisms underlying AD 
have been a key element in the understanding of the pa-
thology, currently the most important alterations identi-
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 Abstract 

 Dementia is a chronic or progressive syndrome, character-
ized by impaired cognitive capacity beyond what could be 
considered a consequence of normal aging. It affects the 
memory, thinking process, orientation, comprehension, cal-
culation, learning ability, language, and judgment; although 
awareness is usually unaffected. Alzheimer’s disease (AD) is 
the most common form of dementia; symptoms include 
memory loss, difficulty solving problems, disorientation in 
time and space, among others. The disease was first de-
scribed in 1906 at a conference in Tubingen, Germany by 
Alois Alzheimer. One hundred and ten years since its first 
documentation, many aspects of the pathophysiology of AD 
have been discovered and understood, however gaps of 
knowledge continue to exist. This literature review summa-
rizes the main underlying neurobiological mechanisms in 
AD, including the theory with emphasis on amyloid peptide, 
cholinergic hypothesis, glutamatergic neurotransmission, 
the role of tau protein, and the involvement of oxidative 
stress and calcium.  © 2017 S. Karger AG, Basel 
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fied can be explained through: the amyloid peptide theo-
ry, the cholinergic hypothesis that includes glutamatergic 
neurotransmission alterations, the role of tau protein, 
and the involvement of oxidative stress (OS) and calcium.

  The Cholinergic Hypothesis 

 At a molecular level, the cholinergic hypothesis is the 
first and most studied approach that describes AD patho-
physiology. It was defined more than 30 years ago as a 
primary degenerative process capable of selectively dam-
aging groups of cholinergic neurons in the hippocampus, 
frontal cortex, amygdala, nucleus basalis, and medial sep-
tum, regions and structures that serve important func-
tional roles in conscious awareness, attention, learning, 
memory, and other mnemonic processes  [2] . This selec-
tive alteration generates a downregulation of cholinergic 
markers such as acetyltransferase and acetylcholinester-
ase that associate with the onset of cognitive impairment 
 [3, 4] ; through the existence of proportionality between 
the decrease in cholinergic markers, the density of neuro-
fibrillary alterations, and the severity of the pathology. 

  The main findings supporting this premise are the fact 
that non-selective muscarinic antagonists such as sco-
polamine-induced cognitive impairment, favor the pro-
duction of beta-amyloid peptide and decrease the activ-
ity of α-secretase  [5] . Some triterpenoid saponins have 
shown to reduce scopolamine-induced amnesia  [6–8]  
and non-selective and selective muscarinic agonists have 
shown to improve learning and memory. Selective M1 
muscarinic agonists are a pivotal target that link major 
hallmarks of AD. The exact molecular mechanisms of the 
effect of cholinergic drugs in learning and memory, and 
their clinical treatment viability are still being studied  [9–
12] .

  This hypothesis was reinforced through immunohis-
tochemical, neuroimaging, and other analyses that re-
vealed: a decrease in the number and density of nicotinic 
receptors in AD patients (mainly α4β2 subtype), a re-
duced expression of α3, α4, and α7 subunits at cortex and 
hippocampus, and a decline in the binding ability of α7 
hippocampal and α4 cortical receptors  [13–15] .

  The main alterations in cholinergic neurons consid-
ered in this hypothesis are: choline uptake, impaired ace-
tylcholine release, deficits in the expression of nicotinic 
and muscarinic receptors, dysfunctional neurotrophin 
support, and deficits in axonal transport  [16–18] . Recent 
studies have shown that amyloid β interacts with cholin-
ergic receptors affecting their function  [19] .

  Because the cholinergic and glutamatergic systems sig-
nificantly interact during neurotransmission alterations 
in the glutamatergic, signaling has been associated with 
cholinergic disruptions found in AD  [20] , an aspect that 
enhances cholinergic hypothesis. This postulate dictates 
that acetylcholine and its receptors, especially (α7) 5  are 
considered as neuroprotective by modulating glutamate-
mediated neuronal excitability  [21, 22] . In AD abnormal-
ities in glutamatergic, neurotransmission is initially ob-
served at the entorhinal cortex (EC), which is followed by 
further neurotransmission defects in the hippocampus, 
amygdala, frontal cortex, and parietal cortex  [23] .

  The physiological glutamatergic neurotransmission in 
the hippocampus produces a cytosolic calcium signal, 
which mediates synaptic plasticity phenomena such as 
long-term potentiation (LTP), encouraging learning and 
memory consolidation  [24] . However, a sustained in-
crease in calcium, sodium, and chloride ions as a result of 
the hyperactivation of NMDA glutamate receptors has 
been associated with excessive depolarization of the post-
synaptic membrane, onset neurodegenerative processes 
and cell death  [25–27] . Likewise, an increase in intraneu-
ronal calcium as a consequence of a dysfunctional gluta-
matergic neurotransmission can generate a long-lasting 
depression in the cerebellum (LTD), with calcium over-
load in mitochondria, activation of nitric oxide synthesis, 
generation of free radicals, OS, initiation apoptosis and 
neuronal death  [28–31] .

  Experimentally incubating neurons with glutamate 
promotes the deposit of filaments similar to neurofibril-
lary tangles observed in AD. Also, the exposure of neuro-
nal cultures to amyloid β promotes glutamate-induced 
neurotoxicity and regulates the expression of NMDA 
 receptors on the membrane  [32, 33] .

  At the synaptic level, the lack of enzymes responsible 
for the degradation of glutamate causes neuronal trans-
porters at the neuronal and glial levels to be responsible 
for the reuptake of the excess of neurotransmitter  [34] . 
In AD, the inhibition of presynaptic and glial glutamate 
transport  [35] , the reduced activity of glutamine synthe-
tase (converts glutamate to glutamine)  [36] , the discrete 
depolarization of neurons, and stimulation of nitric ox-
ide production by amyloid β  [23]  favor the prolonged 
presence of extra neuronal glutamate, and hence the 
continued receptor stimulation and excitotoxicity  [16, 
34] .

  The cholinergic hypothesis has served as a basis for the 
majority of treatment strategies and drug development 
approaches (acetylcholinesterase inhibitors, cholinergic 
precursors, cholinergic receptor agonists, allosteric cho-
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linergic receptor potentiators, NMDA receptor blockers) 
for AD. Currently there is consensus that the observed 
relationship between cognitive impairment and de-
creased cholinergic transmission in the brain plays an im-
portant role in AD but by itself does not establish defini-
tive causation of the disease  [37, 38] .

  The Amyloid Hypothesis 

 In the amyloid cascade hypothesis of AD, the disease 
is analyzed as a series of abnormalities in the process and 
secretion of the amyloid precursor protein (APP), where 
an inequality between production and clearance of amy-

loid β is the triggering event and the most important fac-
tor; responsible for other abnormalities observed in AD 
 [39] . Amyloid β is a peptide with high resistance to pro-
teolytic degradation. It consists of 37–43 amino acids, in 
which the isoforms 1–40 and 1–42 are the most common 
 [40] . The 1–42 amyloid peptide isoform is the most hy-
drophobic and is considered to have the greatest toxicity 
 [23] . Because of its physical characteristics, it often ac-
quires the configuration of a β-pleated sheet  [41] , show-
ing a greater tendency to aggregate and form the core of 
the amyloid plaque  [42–44] . It is the main component of 
amyloid neuritic plaques  [43, 45] .

  The processing of APP at the plasma membrane con-
stitutes the origin of the amyloid peptide ( Fig. 1 ). APP is 

Abnormal Normal

APPsAPP
APPs

Oligomer

Amyloid
plaque

Alterations
T phosphorilation

Calcium dysfunction
Mitochondrial
dysfunction

Synaptic alteration
Cognitive impairment

*, 5

FGF, EGF, NGF
Cytokines
Hormones

ADAM

BACE1

C99
AICDAICD

YY

  Fig. 1.  Amyloidogenic and non-amyloidogenic processing of the 
APP. The top part of the figure shows the 2 main paths in the 
processing of APP, the most important elements involved, and 
the main alterations associated with the amyloidogenic pathway 
of APP. The bottom part of the figure shows potential modula-
tors of the secretase activity (activation of receptors, growth fac-
tors, cytokines, hormones). α, α-secretase activity; β, β-secretase 
activity; γ, γ-secretase activity; BACE1, β-site – APP – cleaving 
enzyme 1; βA, amyloid β peptide; ADAM, α-secretase; APPsα 
and APPsβ, soluble portions produced by the effect of α- and 
β-secretase; C83, fragment of 83 amino acids of the carboxyl ter-
minal portion produced by the effect of α-secretase; C99, frag-

ment of 99 amino acids of the carboxyl terminal portion pro-
duced by effect of β-secretase; p3, peptide resulting from 
γ-secretase; AICD, carboxy-terminal fragment referred to as the 
intracellular domain of APP; T, Tau protein; mAChRs, musca-
rinic acetylcholine receptors; mGluR, metabotropic glutamate 
receptors; 5HT, serotonin receptors; CRHR1, receptor 1 of the 
corticotropin-releasing hormone; PAC1R, receptor 1 of pituitary 
adenylate cyclase; FGF, EGF, NGF, growth factors of fibroblasts, 
epidermis and the nervous system respectively; DOR, opioid 
 receptor δ; A2AR, adenosine receptor 2A; β2-AR, β2 adrenergic 
receptor; GPR3, receptor 3 coupled to protein G; CXCR2, 
 chemokine receptor 2. 
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a transmembrane glycoprotein of type I and its specific 
function is unclear; however it is known that its expres-
sion is increased during cellular stress phenomena. APP 
processing is performed by a series of ruptures, which in-
volves an initial breakdown by enzymes with α-secretase 
activity, mainly enzymes belonging to the disintegrin and 
metalloprotease (ADAM) family including: ADAM10, 
ADAM17, and ADAM19  [45, 46] . ADAM activity can be 
modulated by different situations such as receptor activa-
tion, growth factors, cytokines, and hormones. The exci-
sion produced by α-secretase leads to the formation and 
release of a peptide of the amino terminal portion called 
APPs α, which is soluble under certain conditions  [47]  
and a fragment of the carboxyl terminal portion (C83) 
 [48] . The APPsα is found in lower quantities in AD pa-
tients  [49]  and has been associated with trophic and neu-
roprotective functions  [50] . 

  In patients with AD, the first APP rupture at an extra-
cellular level, generates a shorter soluble amino terminal 
portion (APPsβ) and a longer terminal carboxyl fragment 
(C99)  [51, 52] . This split is performed mainly by BACE1 
(β- site – APP – cleaving enzyme), an ubiquitous trans-
membrane protease with β-secretase activity. BACE1 ex-
pression can be modulated by frequently seen situations 

in neurodegenerative diseases and aging such as OS, isch-
emia, inflammation, hypoxia, and trauma  [51, 53–55] .

  After γ-secretase, consisting of a heteromeric complex 
of 4 subunits called: presenilins (PSEN1 and PSEN2), 
nicastrin (NCSTN), APH-1, from the acronym anterior 
pharynx defensive phenotype 1 (APH-1a and APH-1b) 
and PEN – 2 (PS-enhancer-2)  [56]  produces a cut in the 
γ site releasing the carboxyl terminal fragment named 
APP intracellular domain (AICD) and producing the am-
yloid β peptide, which is secreted, aggregated, and accu-
mulated in extracellular plaques due to its low solubility 
( Fig. 2 )  [57] . It has been observed that APH-1 inhibits the 
production of amyloid β peptide while the PEN-2 favors 
it  [58, 59] .

  Several studies have shown the in vitro and in vivo 
neurotoxicities of various forms of amyloid β  [60] ; how-
ever, the exact mechanisms are quite complex and not 
fully understood  [37, 52] . So far the relation between the 
specific site of action of amyloid β and its structural di-
versity is unknown; what is clear is that the amino acid 
sequence that is contained between positions 25 and 35 
of the primary structure has greater neurotoxicity.

  Concentrations of amyloid β peptide are determined 
by the balance between generation and clearance; in AD 

APP

1
4

40
42

5

C31
Nicastrin

Y-Secretase

Oligomerization

BACE PEN-2 Presenilin

AICD

2b

2a

APH-1

Y
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3

  Fig. 2.  Production of amyloid β peptide from sequential proteolytic 
breaks of the APP. The figure shows the sequence of phases in the 
processing of APP in the formation of amyloid β peptide and its 
oligomerization. Numbers (1, 2a, 2b, 3, 4, and 5) refer to intervention 
sites where the production of amyloid β peptide could be modulated 

with possible therapeutic utility. α, α-secretase cut site; γ, γ-secretase 
cut site γ; ε, cut site ε of γ-secretase; BACE, β-secretase; Aβ, amyloid 
β peptide; AICD, carboxy-terminal fragment referred to as APP in-
tracellular domain. 
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patients, a clearance abnormality leads to the accumula-
tion of amyloid β in the brain  [61] . The transport of amy-
loid β through the blood-brain barrier is mediated by re-
ceptors, the passage of the peptide from the brain to the 
blood occurs by interaction with LRP-1 receptors (Lipo-
protein receptor-related protein-1) and the action of p-
glycoproteins. Increased levels of amyloid β and aging, 
decrease of the expression of LRP-1 receptors results in 
an accumulation of amyloid peptide in the central ner-
vous system (CNS).

  The transit of amyloid β peptide into the brain through 
the blood-brain barrier  [62]  also occurs via receptors, pri-
marily through multi-ligand AGE (advanced glycation 
end products) receptors or RAGE. RAGE expression is 
determined by the concentration of its own ligands. In 
contrast to the expression decrease of LPR-1s due to high 
levels of amyloid β in the brain, RAGE increases the ex-
pression under these conditions.

  Since RAGE interaction with amyloid β causes: in-
flammatory responses at the endothelium level, endothe-
lial cell apoptosis, decreased cerebral blood flow, and 
suppression of LTP; RAGE may play a role in the devel-
opment of neurovascular changes observed in AD  [62–
65] .

  Proteolytic degradation of amyloid β peptide is car-
ried out mainly by neprilysin (NEP) and the insulin-
degrading enzyme (IDE). During aging and in AD pa-
tients, the expression of NEP and IDE decreases, caus-
ing an increase in the concentration of amyloid β peptide 
in the brain  [61, 66] . In patients with AD, decreased 
quantity and activity of NEP is seen especially in the 
cortex and hippocampus, but not in other regions of the 
brain. 

  The secretion of IDE in the brain is regulated by the 
microglia, and similar to NEP its distribution and con-
centration also presents differences in AD patients. Low-
er concentrations have been identified in the cortex and 
hippocampus, where the predominant form has a higher 
degree of oxidation  [9] .

  The endosomal lysosomal pathway is also an impor-
tant regulator of the processing of APP  [67, 68]  and of 
the tau protein metabolism  [69] . Because of the impor-
tance of this pathway for cellular maintenance and its 
role in the immune system, recent studies suggest that 
dysfunctions in neuronal autophagy causing an in-
crease in the amount and size of endosomes at the cel-
lular level, may be involved in the pathogenesis of AD 
 [70–74] , as these changes are seen before the appear-
ance of senile plaques and neurofibrillary tangles in the 
brain  [72, 74] . Other studies report the absence of a di-

rect relationship between quantity and size of lyso-
somes and AD  [75] .

  The amyloid cascade hypothesis has the highest accep-
tance rate; however, current studies support the idea that 
not only amyloid β but other fragments from the process-
ing of APP, such as C83 or AICD, contribute to the patho-
genesis of AD resulting in difficulty to attribute the path-
ological features of the disease exclusively to the amyloid 
peptide  [60] .

  The Tau (τ) Protein 

 The amyloid cascade hypothesis consists of the pro-
duction and accumulation of amyloid β peptide as the 
beginning of the disease process; however, it does not 
completely explain the etiopathogenesis of AD. In this 
hypothesis, the τ protein arises as a secondary patho-
genic event that subsequently causes neurodegeneration 
 [76, 77] . In vitro experiments using various cell types, 
ranging from neuronal cell lines to primary hippocam-
pal and cortical neurons and hippocampal organotypic 
cultures, have demonstrated that amyloid β induces 
τ-alterations  [78–80] . These include mainly an increased 
phosphorylation and cytoplasmic and dendritic translo-
cation often linked to neurodegeneration  [81] . 

  The τ protein is a highly soluble protein that re-
lates to the microtubules and its function under normal 
conditions consists of stabilizing them. These microtu-
bules provide support for structural changes, axonal 
transport, and neuronal growth  [69, 82, 83] . In the 
CNS, the τ protein presents itself in 6 different isoforms 
that vary in the number of binding sites for microtu-
bules and the amount of exons they possess  [82] . In AD, 
dysfunctions occur in phosphorylation processes of τ 
protein, resulting in a hyperphosphorylation of the 
molecule. 

  Hyperphosphorylated protein τ presents aberrant ag-
gregation with the cytoskeletal proteins; it shows a lower 
grade of interaction with microtubules which favors an 
increase of free tau protein that leads to greater aggrega-
tion and fibrillization of itself, with the consequent mal-
function of axonal transport  [84, 85] .

  Scientific literature reports changes in τ protein and 
amyloid β oligomers as the most important factors re-
sponsible for neuronal dysfunction in the pathogenesis of 
AD  [46, 86] . Likewise neurofibrillary tangles observed 
initially in the EC and hippocampus subsequently extend 
to the amygdala and cortical areas (temporal, frontal, and 
parietal)  [57, 85] . 
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  Contribution of OS in the Pathogenesis of AD 

 It has been long recognized that one of the common 
characteristics in neurodegenerative diseases is the rela-
tionship between OS and neuronal apoptosis  [87] . OS is 
a condition in which the balance between production of 
active reactive oxygen species (ROS) and the level of an-
tioxidants is significantly disturbed, resulting in cell dam-
age. ROS chemically interact with biological molecules 
such as nucleic acids, proteins and lipids, and cell organ-
elles  [88] .

  In addition to the established pathology of senile 
plaques and neurofibrillary tangles, the presence of ex-
tensive OS is a characteristic of AD brains. The accumu-
lation of free radical damage, alterations in the activities 
or expression of antioxidant enzymes such as superoxide 
dismutase and catalase are also present in AD patients 
 [89] . Although OS is an important factor in AD patho-
genesis, the mechanisms by which the redox balance is 
altered and the sources of free radicals are not exactly 
known. It has been demonstrated that abnormal accumu-
lation of amyloid β is capable of promoting the formation 
of ROS through a mechanism that involves the activation 
of NMDA receptors  [90] , and that OS may augment am-
yloid β production and aggregation as well facilitate tau 
phosphorylation and polymerization, forming a vicious 
cycle that promotes the initiation and progression of AD 
 [91] .

  Neuronal mitochondria (essential for cellular 
 metabolism) show metabolic abnormalities in AD 
 models. It has been demonstrated that mitochondria 
are quite vulnerable to OS, which may directly disrupt 
its functions (energy production, decrease of antioxi-
dant enzymes, and loss of membrane potential), gener-
ating a further increase in ROS levels that finally pro-
duce cell death by caspase activation and apoptosis  [92–
94] .

  Calcium Homeostasis in AD 

 Calcium, an ubiquitous intracellular messenger, regu-
lates multiple physiological functions, generating con-
centration gradients and binding to several proteins, re-
ceptors, and ion channels. The regulation of intracellular 
calcium homeostasis is a very complex mechanism that is 
vital for several cellular pathways and is thus involved in 
cell survival and death. Two organelles play a major role 
in calcium homeostasis, the endoplasmic reticulum (ER) 
and mitochondria, whereas ATPase calcium pump and 

the sodium-calcium exchanger are the 2 main systems in-
volved in calcium efflux through the plasma membrane 
 [95, 96] . Ca 2+  is continuously exchanged between the cy-
tosol and the lumen of the ER. Overload of intracellular 
calcium due to a blockage or dysfunction of the transport 
system leads to the cleavage of several proteins and other 
substrates, OS, perturbs energy production  [97] , stimu-
lates protein production (amyloid β and τ protein)  [98],  
and induces cell death through necrosis and/or apoptosis 
 [99, 100] .

  In AD, the ability of neurons to regulate the influx, 
efflux, and subcellular compartmentalization of calcium 
is compromised  [101] . These disruptions involve sev-
eral mechanisms, such as alterations of calcium buffer-
ing capacities, deregulation of calcium channel activi-
ties, excitotoxicity or disruption of mitochondrial func-
tions. Alterations resulting from calcium disruption are 
the result of age-related OS, metabolic impairment in 
combination with disease-related accumulation of Aβ 
oligomers and the presence of mutations of genes that 
encode presenilin  [102] . Particularly, Aβ may promote 
cellular calcium overload by inducing membrane-asso-
ciated OS and forming pores in the membrane  [103–
105] . 

  Conclusion 

 During the last decades, advances in cellular biology 
have been essential for understanding the molecular 
mechanisms underlying AD. Currently it is known that 
the molecular pathogenesis of AD is complex and in-
volves several theories or hypothesis where many diverse 
factors interrelate. However, none of these postulates 
alone is able to clarify the entire aspect regarding the pa-
thology, and further studies are required. Aspects like the 
initial causes of the disease such as the abnormal forma-
tion of amyloid β, and the mechanisms by which it affects 
neurons and nicotinic acetylcholine receptors and the re-
lation between the disruption of cholinergic pathways 
and the cognitive deficits of AD are still not fully under-
stood.

  New discoveries that contribute to the elucidation of 
the molecular pathogenesis of AD and its relations are 
crucial because they can allow the development of new 
therapeutic strategies for the treatment of a condition 
where current drug therapy lacks the ability to prevent its 
occurrence and progression. 
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